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The Method of Christopherson for Solving Free 
Boundary Problems for Infinite Journal Bearings 

by Means of Finite Differences 

By Colin W. Cryer* 

Abstract. A method for solving free boundary problems for journal bearings by means 
of finite differences has been proposed by Christopherson. We analyse Christopherson's 
method in detail for the case of an infinite journal bearing where the free boundary problem 
is as follows: Given T > 0 and /(t) find r E (0, T] and p(t) such that (i) [h3p']' = h' for 
t E (0, r), (ii) p(O) = 0, (iii) p(t) = 0 for t [T, Ir7, and (iv) p'(r - 0) = 0. 

First, it is shown that the discrete approximation is accurate to O([At]2) where At is 
the step size. Next, it is shown that the discrete problem is equivalent to a quadratic pro- 
gramming problem. Then, the iterative method for computing the discrete approximation 
is analysed. Finally, some numerical results are given. 

1. Introduction. A journal bearing consists of a rotating cylinder which is 
separated from a "bearing surface" by a thin film of lubricating fluid (see Fig. 1). 
The fluid is fed in at A and flows out at B. The width of the film is smallest at C, 
and we set 1 = O/0, where 0 is as shown in Fig. 1. 

Between C and B, the width of the film increases so that the pressure in the 
lubricating fluid may be expected to decrease. We assume that for t - r the pressure 
becomes so low that the fluid vaporizes. The point t T. the interface between the 
two phases of the fluid, is called the free boundary. 

The mathematical problem can now be formulated (see Pinkus and Sternlicht 
[7, p. 41 and p. 46]): 

Problem 1. Find a function p(t) and a constant r such that p C e[O, T] 0 & 2)(0 r), 

and 

d K dpi dh 
(1.1) ?p(t)- =OLt d t < t < 

(1.3) p(O)= 0, 

dt (1.4) dt P(T = . 

In Problem 1, p(t) is proportional to the fluid pressure, while Eq. (1.1) is Reynolds' 
equation for the pressure in a lubricating film. 
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FIGURE 1. Cross-section of a journal bearing 

In order that Problem 1 be well defined, it is necessary that h(t), the width of the 
film, satisfy certain conditions. Throughout this paper, we will assume that 
h E e"l)[0, 1] and that 

(1.5) h(t) > 0, t E [0, TI, 

dh <o o ) 
(1.6) dt 

-t>0? tCE(1, T), 

(1.7) h(T) ? h(0). 

It will be shown in Section 2 that conditions (1.5) through (1.7) ensure that there 
exists a unique solution to Problem 1. 

Conditions (1.5) and (1.6) are always satisfied in practice, but this is not true of 
(1.7). However, as we shall see in Section 2, condition (1.7) can be imposed without 
any loss of generality. 

In 1941, Christopherson [3] proposed a method for solving journal-bearing 
problems numerically. A partial analysis of the method was given by Gnanadoss and 
Osborne [6]. In the present paper, we present a detailed analysis of Christopherson's 
method as applied to Problem 1. 
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This paper is based upon a technical report (Cryer [4]) in which further details, 
in particular all proofs, will be found. 

Acknowledgement. The author is indebted to T. Ladner who wrote the program 
used to obtain the numerical results in Section 7. 

2. The Analytic Problem. In this section, we first analyse Problem I and then 
formulate an equivalent problem, Problem 2. 

Let 

-2 (2.1) ~2(t)- f h2(s) ds, t E [0, T], 

(2.2) 93(t) = f h3(s) ds, t ( (0, T], 

(2.3) o(t) = ?)2(t)/t3(t), t E (0, T], 

(2.4) +(t) = h(t)63(t) - 62(t), t E [0, T]. 

LEMMA 2.1. There is a unique constant a, 1 < a < T, such that (i) +(t) < 0,. for 
I E; (0, a); (ii) +(a) = 0; and (iii) A(t) > 0, for t E (a, T]. 

For a. E (0, T], let q(t; a) be the function such that (i) .Cq(t; a) = 0, t E (0, a), 
(ii) q(O; a) = 0; and (iii) q(t; a) = 0, t E [a, T]; where 2 is as in (1.1). It is easily 
proved that q(t; a) is unique and is given by 

q(t; a) = 2(t) - r(a)ff3(t), t E [0, a], 

0, t E (a, T]. 

THEOREM 2.2. There is exactly one solution {p(t), r} of Problem 1. If a is as in 
Lemma 2.1, then r = a, and p(t) = q(t; a). 

Proof. The proof is a straightforward generalization of previous results (Birkhoff 
and Hays [1, p. 132], Pinkus and Sternlicht [7, p. 46], and Gnanadoss and Osborne [6]). 

Problem 2. Find {p(t), r) such that 

(2.5) r supIa E (0, T]: q(t; a) > 0 for tE [0, T]}, 

(2.6) p(t) = q(t; r). 

That is, find the largest interval in which a nonnegative solution of Reynolds' 
equation exists. 

Problem 2 was first suggested by Gnanadoss and Osborne [6], and the next 
theorem is a generalization of their results: 

THEOREM 2.3. Problems 1 and 2 are equivalent. 
We conclude this section with a discussion of condition (1.7). First, we note that 

it is the role of condition (1.7) to ensure that the lubricating fluid occurs in both the 
liquid and gaseous phases. If (1.7) is not satisfied, then it is possible, for example if 
B is close to C (see Fig. 1), for the fluid to occur only in the liquid phase. 

Secondly, we note that there is no loss of generality in assuming (1.7). For suppose 
that h(t) and P are such that (i) h E &'([0, T]; (ii) /i(t) > 0, t E [0, T]; (iii) dh/dt < 0, 
t E (0, 1); and (iv) dh/dt > 0, t E (1, P); but that h(P) < h(o), Let T > T and 
h e CE1)[0, 7] be such that (1.5) through (1.7) are satisfied and h(t) = h(t) for 
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I E [0, i]; clearly, h and T can be chosen in many ways. Let Problem 1 and Problem i 
be the problems corresponding to h and A, respectively. Clearly, if Problem 1 has a 
solution {p(t), f}, then Problem 1 has a solution {p(t), r} where r = T, p(t) = p(t) 
for t E [0, Ail, and p(t) = 0 for t C (1, 1]. Hence, to solve Problem 1, we may first 
find the solution {p(t), r} of Problem 1; by Theorem 2.2, this solution exists. If 
r > 1, Problem i has no solution. On the other hand, if r _ T, then Problem 1 has 
the solution {p(t), PI where P = r and p(t) = p(t) for t C [0, I. 

3. The Discrete Approximation. Let {p(t), r} be the solution of Problems 1 
and 2. We subdivide the interval [0, T] into N subintervals, each of length At, so that 
N T/At. We seek an integer m and an (N + l)-vector P = {Pi}, j = 0, 1, * N. 
such that mAt r r and Pi ~ p(jAt). 

We approximate the Reynolds' equation (1.1) by the finite-difference equation 

(3.1) (LP); = (,t)2 A(h3 _.12VPi) - -t Ahj_1/2 = 0, 0 < i < N, 

where A and V denote the forward and backward difference operators respectively, 
hi = h(iAt), and hi-112 = h([i - iAAt). 

In order to avoid certain trivial possibilities, we assume that At _ 23, and that 
N _ 3. We also make an additional assumption about h(t), namely, that 

(3.2) h(T - (At)/2) ? h((At)/2). 

Assumption (3.2) is trivially satisfied by, if necessary, slightly increasing T and 
modifying the definition of h(t) appropriately (see Section 2 where a similar device 
is used). 

Let 

(3.3) 12(M) = ? (h-1/2)2, 0 ? i < N, 
i-1 

(3.4) 13(G) = E (hi1 93 , 0? i < N, 
i31 

(3.5) cI?i = 12(i)/13(i), 1 < i < N, 

(3.6) *I, = h=i++112I3(i) - M2(O), 0 i ? N - 1, 

with the convention that 
0 0 

E (hi-22= E (hi112)-3 = 0. 

Noting the analogy between Eqs. (1.1) and (3.1) and between Eqs. (2.1) through 
(2.4) and Eqs. (3.3) through (3.6), we are led to 

LEMMA 3.1. There is a unique integer n, 1 - 3(At)/2 < nAt < T - 2(At), such 
that (i) a; < 0, for 1 < i < n; (ii) *Jn < 0; and (iii) 'J > 0, for n < i ? N - 1. 

For any integer 1, 1 < I < N. let Q(l) = I Qi(l)} be the (N + 1)-vector such that 

[LQ(l)]j = 0, 1 ? i 1 - 1, 

Qo(l)= 0, 

Q(l)= 0 I _ i < N, 
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where L is as in (3.1). It is easily proved that Q(l) is unique and is given by 

Qi(1) = Att I2() - I13(i)I, 0 < i < 1, 

-0, l_ i < N. 

We can now formulate the discrete analog of Problem 2: 
Problem 2D. Find { P, m I such that, 

(3.7) n = max $1: I 1 N; Qi(l) _> 0 for 0 < i < N1, 

(3.8) P= Q(m7Z). 

THEOREM 3.2. There is exactly one solution {P, mI of Problem 2D. If nt is as in 
Lemma 3.1, then m = n + 1, and P Q(m). 

4. Error Analysis. In Theorems 2.2 and 3.2, explicit expressions for the solution 
{p(t), r I of Problem 2 and the solution { P, m I of Problem 2D3 are given. By comparing 
these expressions, error estimates can be obtained. Under the assumption that 

(4.1) h E D[O. T], 

lengthy, but straightforward, computations yield 
THEOREM 4.1. There are positive constants (At)o and K such that if 

(4.2) At < (At)O, 

then 

(4.3) - mAt ? 5 (At)/8, 

and 

(4.4) Ip(jAt) - Pij I K(At)2, 0 < j < N. 

It follows from Theorem 4.1 that { P, m} is as accurate an approximation to 
jp(t), 'rI as could be hoped for. For we can at best have that 

(4.5) IT - BnAtt ? (At)/2, 

and (4.3) is almost as good as (4.5). Since we can at best have (4.5), we might expect 
that Ip(jAA) - Pl = O(At). Instead, the gods have smiled, and we have (4.4). More 
prosaically, the "reason" why (4.4) holds is that the condition p'(-r) = 0 makes p 
"relatively insensitive to errors in 

5. Another Discrete Approximation. In this section, we formulate a second 
discrete approximation to Problem 2, Problem 3D, which can be shown to be 
equivalent to Problem 2D. The reason for introducing Problem 3D is that Chris- 
topherson's method is best understood if it is regarded as an algorithm for. solving 
Problem 3D. 

Set M = N - 1 and denote by A the M X M matrix with components 

Aii = -(hi+112)3 if] = i + 1, 

(5.1) = [(hi+1/2)3 + (hi,112)3], if j =, 

- -(hi 112)3, if] = i- 1, 

= 0, otherwise, 
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for I < i, j < M. Noting (1.5), we see that A is a symmetric irreducibly diagonally 
dominant matrix with positive diagonal entries, so that A is positive definite (Varga 
[9, p. 23]). 

Denote by B the M-vector with components 

(5.2) Bi = -(At)[hi+112 -hi-12], 1 _ i M. 

Problem 3D. Find M-vectors X and Y such that 

(5.3) AX-Y= B, 

(5.4) XT -O 

(5.5) X_ O.0 Y 0 . 

Using the theory of quadratic programming and the detailed information available 
concerning the solution of Problem 2D, we obtain 

THEOREM 5.1. Problem 3D has a unique solution. Problems 2D and 3D are equiva- 
lent. If { P, m } and { , Y } are the solutions of Problems 2D and 3D, respectively, then 

(5.6) Xi = Pi, 1 < i_ M, 

(5.7) Y = AX-B. 

(5.8) PO = PN = O. 

(5.9) in = inf i; Yi > 0}, 

(5.10) Y,=O 1? < i < in, 

(5.12) Xi > O.9 1 < i _ m-29 

(5.13) Xm I = -(At)Tmij/{(hm._12)3I3(m)} I 
0, 

(5.14) Xi = 0, rn < i 5 M. 

6. The Iterative Solution of the Discrete Approximation. In this section, we 
analyse the algorithm used by Christopherson to compute the solution of the discrete 
approximations to Problem 1. 

Algorithm 6.1. Choose an M-vector X0' = {X<?'0 where X'?' > 0. Choose a 
relaxation parameter A, where 0 < w < 2. 

Generate a sequence of M-vectors X(') = {X'' }, R'k) = {R'k}, and y(k) - 

y(k) }, k - 1, 2, * , using the equations, 

(61 k(k++ 1- - - 
(k) (6.1)R , A XAij 

(6.2) Xi.+l) = max 0 Xi + cR l/Aii), 

(6.3) y(k+1) = R(k+ + Aii (X. - 

The reader will have observed that Algorithm 6.1 consists of applying S.O.R. 
(systematic o verrelaxation) to the equations AX = B with the proviso that the iterates 
X(k) be nonnegative. This was the way in which Algorithm 6.1 was viewed by 
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Christopherson except that, since he worked by hand, he used relaxation rather 
than S.O.R. The condition that the vectors X(k) be nonnegative arises naturally from 
the physical restraint that the lubricating fluid cannot support negative pressures. 

Christopherson used Algorithm 6.1 without explicitly formulating the discrete 
problem that he was solving. Of the two formulations of the discrete problem that 
we have developed, Problems 2D and 3D, it seems to us that Problem 3D lies closest 
in spirit to Christopherson's ideas. 

In computations for Cameron and Wood [2], Fox (working by hand) used 
Algorithm 6.1 with relaxation instead of S.O.R.; Raimondi and Boyd [8] (using an 
IBM 704) used the Liebmann or Gauss-Seidel method instead of S.O.R.; finally, the 
use of S.O.R. was suggested by Gnanadoss and Osborne [6]. 

Throughout the remainder of this section, we denote the solutions of Problems 
2D and 3D by {P, m} and {X, Y}, respectively, and assume that X<*) and y(k) are 
generated using Algorithm 6.1. 

Using the results of Cryer [5], we obtain 
THEOREM 6.1. For any X` > 0, X(k) - X and y(k) - Y as k O. 
Next, we consider the speed with which Algorithm 6.1 converges. We define the 

asymptotic rate of convergence of Algorithm 6.1 to be 

(6.4) R(A, B, w) = -log { sup lim sup I[X(k) - xWll/k} 

where j1 denotes any vector norm. 
We need certain concepts from the theory of S.O.R. (see Varga [9]). Let A be a 

p X p positive definite matrix. Let A = 3 -2- , where 13 is a diagonal matrix 
while E~ and f are, respectively, strictly upper and strictly lower triangular matrices. 
Then the point successive relaxation matrix corresponding to A is given by 

(6.5) ?.@(A) = (3 - A)-I{(I - co)1B + cof}. 

The point Jacobi matrix j is given by 

(6.6) 3= (1b)-y[f + P. 

The asymptotic rate of convergence for ?S(A) is given by 

(6.7) R.X[2S (A)] = -log {pU[2f(A)]}, 

where p{j2,(A)] is the spectral radius of ?<,(X). Finally, the optimum relaxation 
parameter = co,(A) satisfies 

(6.8) R0[2Cb(A)] = max R.[j.(A)]. 

THEOREM 6.2. Assume that Tim-1 > 0. Then 

R(A, B, co) = R.(,G[A(M) 1), 

where A``1) is the (m - 1) X (m - 1) matrix consisting of the first (m - 1) rows and 
columns of A. If w.,t = Wb(A(n ')), then COopt - Wb(A) and R(A, B., w) < R(A, B, co9ot), 
0 < w < 2. 

7. Numerical Results. In this section, we present numerical results for an 
infinitely long full journal bearing to illustrate the theoretical results of the preceding 
sections. 
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The equations for an infinitely long full journal bearing are (Pinkus and Sternlicht 
[7, p. 42 and p. 46]) 

(7.1) d FW3(0) dpi dw(0) O < 0 < 02, 
dO d0J dO 

(7.2) p(O)= O, 02 < 0< 27r, 

(7.3) p(O) = O0 

d 
(7.4) df- P(O) = 0, 0 = 02, 

(7.5) w(0)= 1 + e cos 0. 

Here, e is the eccentricity ratio and satisfies 0 < e < 1. 
Introducing the variable 

(7.6) t= 0/7r, 

it is found that p satisfies Eqs. (1.1) through (1.4) with T = 2, r - 02/7r, and 

(7.7) h(t) = (1 + e cos 7rt)/Vi/r. 

It is easily verified that h satisfies (1.5), (1.6), (1.7), (3.2), and (4.1), so that all the 
results of the preceding sections are valid. 

For h given by (7.7), the solution of Problem 1 can be given analytically (Pinkus 
and Sternlicht [7, p. 47]); the expressions are complex and will not be given here. 

Numerical results were obtained for the case e = .8. The computations were 
performed on the UNIVAC 1108 computer at the University of Wisconsin; this 
computer uses eight-decimal floating-point arithmetic. The analytic solution {p(t), rI 
was computed directly. The discrete approximation {P, ml was computed by using 
Algorithm 6.1; the iterations were terminated when 

(7.8) |IIR( | |II=max IR~k+l)I < 10-7. 

The initial approximation X(0) was always taken to be identically zero. 
Two experiments were carried out. In the first experiment, N was taken equal to 

64 while X was varied. We were primarily interested in determining the number of 
iterations required to converge, that is the number of iterations required before (7.8) 
was satisfied. The results (see Table 7.1) showed that a reasonable strategy was to 
set w * where 

(7.9) c>)* = 2/t1 + sin (r/N)V. 

(W* is the optimum overrelaxation parameter for the discrete two-point boundary- 
value problem V Au, = bi, 1 ? j < N - 1; u0 = uv = 0.) 

In the second experiment, co was taken equal to co* while N was varied. We were 
primarily interested in the difference between {p, r } and { P, m }. Setting 

(7.10) IIp - PI , = max jp(Az) - Pi, 

the dependence of IIp - PIjI upon At is shown in Table 7.2. 
Bearing in mind that the UNIVAC 1108 works to only eight decimal places, it is 

clear that the results are in agreement with the assertion of Theorem 4.1 that 
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TABLE 7.1. Number of iterations to converge (N = 64) 

No. of iterations to 
converge 

1.0 811 
1.1 670 
1.2 558 
1.3 453 
1.4 362 
1.5 288 
1.6 216 
1.7 146 
1.8 70 
1.9 136 
1.90645 146 

TABLE 7.2. Dependence of lIp - PItI upon At 

No. of iterations 
N At IIp - Pilt to converge 

64 .03125 .016017 146 
128 .015625 .002725 268 
256 .0078125 .000756 513 
512 .00390625 .000170 923 

1024 .001953125 .000073 1640 

K(At)2. The other assertion of Theorem 4.1, namely that IT - mAti ; 
5(4t)/8, was always satisfied. 
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